DERIVABILITY, REDUNDANCY AND CONSISTENCY OF RELATIONS
STORED IN LARGE DATA BANKS

E. F. Codd
Research Division
San Jose, California

ABSTRACT: The large, integrated data banks of the future will
contain many relations of various degrees in stored form. It will
not be unusual for this set of stored relations to be redundant.
Two types of redundancy are defined and discussed. One type may be
employed to improve accessibility of certain kinds of information
which happen to be in great demand. When either type of redundancy
exists, those responsible for control of the data bank should know
about it and have some means of detecting any "logical”
inconsistencies in the total set of stored relations. Consistency
checking might be helpful in tracking down unauthorized (and
possibly fraudulent) changes in the data bank contents.

RJ 599(# 12343) August 19, 1969

LIMITED DISTRIBUTION NOTICE - This report has been submitted for
publication elsewhere and has been issued as a Research Report for early
dissemination of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of outside
publication.

Copies may be requested from IBM Thomas 1. Watson Research Center, Post Office Box 218,
Yorktown Heights, MNew York 10598

M

[sa WG]
P

CONTENTS

A Relational View of Data

Some Linguistic Aspects

Operations on Relations

3.1 Permutation

3.2 Projection

3.3 Join

3.4 Composition

Expressible, Named and Stored Relations
Derivability, Redundancy and Consistency
Data Bank Control

[=a RS p RS R, = T

13
13

INTRODUCTION

The first part of this paper is concerned with an explanation
of a relational view of data. This view (or model) of data appears
to be superior in several respects to the graph or network model [1,
2] presently in vogue. It provides a means describing data with its
natural structure only: that is, without superimposing any
additional structure for machine representation purposes.
Accordingly, it provides a basis for a high level retrieval language
which will yield maximal independence between programs on the one
hand, and machine presentation and organization of data on the
other. A further advantage of the relational view is that it forms
a sound basis for treating derivability, redundancy, and consistency
of relations -- these are discussed in the second part of this
paper. The network model, on the other hand, has spawned a number
of confusions, not the least of which is mistaking the derivation of
connections for the derivation of relations. Finally, the
relational view permits a clearer evaluation of the scope and
logical limitations of present management information systems, and
also the relative merits (from a logical standpoint) of competing
representations of data within a single system.

1. A Relational View of Data

The term relation is used here in its accepted mathematical
sense. Given sets S., S,, ..., S, (not necessarily distinct), R is a
relation on these n sets if it is a set of n-tuples, each of which
has its first element from S,, its second element from S,, and so on.
We shall refer to S; as the j" domain of R. As defined above, R is
said to have degree n. Relations of degree 1 are often called
unary, degree 2 binary, degree 3 ternary, and degree n n-ary.

For expository reasons, we shall frequently make use of an
array representation of relations, but it must be remembered that
this particular representation is not an essential part of the
relational view being expounded. An array which represents an n-ary
relation R has the following properties:

Each row represents an n-tuple of R;

The ordering of rows is immaterial;

ALl rows are distinct;

The ordering of columns is significant - it
corresponds to the ordering S,, S5;,, ... S,

of the domains on which R is defined;

(5) The significance of each column is partially
conveyed by labeling it with the name of the
corresponding domain.

e L e Tt
T e

1
2
3
4

The example in Figure 1 illustrates a relation of degree 4
called ship which reflects the shipments-in-progress of parts from
specified suppliers to specified projects in specified quantities.

ship (supplier part project gquantity)

1 2 5 17
1 3 5 23
2 3 7 9
2 7 5 4
4 1 1 12

FIGURE 1: A Relation of Degree 4

One might ask: If the columns are labelec by the name of the
corresponding domains, why should the ordering of columns matter?
As the example in Figure 2 shows, two columns may have identical
headings (indicating identical domains), but possess distinct
meanings with respect to the relation. The relation depicted is
called component. It is a binary relation, each of whose two
domains is called part. The meaning of comporent (x, y) is that
part x is an immediate component (or subassemtly) of part y.

component (part part)
1 5

fos QNS GE N WIS G|
I =} Oy Gy L wun

Figure 2: A Relation with Two Identical Domains

We now assert that a data bank is a collection of time-varying
relations. These relations are of assorted degrees. As time
progresses, each n-ary relation may be subject to insertion of
additional n-tuples, deletion of existing ones, and alteration of
components of any of its existing n-tuples.

Consider, for example, a data bank which contains information
about parts, projects, and suppliers. The incividual description
for an individual object (such as a particular part) is called an
entity [3]. The prototype description for a class of objects is
called an entity type. The set of entities of a given entity type
can be viewed as a relation, and we shall call such a relation an
entity type relation. In the example under ccnsideration, there
might be an entity type relation called part cefined on the
following domains:

) part number

) part name

) part color

) part weight

) quantity on hand
) quantity on order

and possibly other domains as well. Each of these domains is, in
effect, a pool of values, some or all of which may be represented in
the data bank at any instant. While it is conceivable that, at some
instant, all part colors are present, it is unlikely that all
possible part weights, part names, and part numbers are. The
domains listed above correspond to what are commonly called the
attributes of the entity type part.

Normally, one attribute (or combination of attributes) of a
given entity type has values which uniquely identify each entity.
Such an attribute (or combination) is called a key. In the example
above, part number would be a key, while part color would not be. A
key is non-redundant if it is either a simple attribute (not a
combination) or a combination such that none of the participating
attributes is superfluous in unigquely identifying each entity. An
entity type may possess more than one non-redundant key. This would
be the case in the example, if different parts were always given
distinct names.

The remaining relations in a data bank are between entity
types, and are, therefore, called inter-entity relations. An
essential property of every inter-entity relation is that its
domains include at least two keys which either refer to distinct
entity types or refer to a common entity type serving distinct
roles.

The examples in Figures 1 and 2 will help clarity this. The
relation exhibited in Figure 1 involves three keys, one for each of
the entity types supplier, part, project. The relation exhibited in
Figure 2 involves two keys referring to the common entity type part,
the first key serving to identify a component, the second to
identify an assembly containing that component. Both of these
relations are inter-entity relations.

So far, we have discussed examples of relations which are
defined on simple domains - domains whose elemants are atomic
(non-decomposable) values. Non-atomic values can be discussed
within the relational framework. Thus, some domains may have
relations as elements. These relations may, in turn, be defined on
non-simple domains, and so on. For example, one of the domains on
which the entity type relation employee is defined might be salary
history. An element of the salary history domain is a binary
relation defined on the domain date and the domain salary. The
salary history domain is the set of all such binary relations.

2. Some Linguistic Aspects

The adoption of a relational view of date, as described above,
permits the development of a universal retrieval sublanguage based
on the second-order predicate calculus.* Such a language would
provide a yardstick of linguistic power for all other proposed
retrieval languages, and would itself be a strong candidate for
embedding (with appropriate syntactic modification)
in a variety of host languages (programming, command or problem
oriented). While it is not the purpose of this paper to describe
such a language in detail, its salient features would be as follows.

Let us denote the retrieval sublanguage by R and the host
language by H. R permits the declaration of domains, together with
relations of various degrees on those domains. H permits supporting
declarations which indicate, perhaps less permanently, how these
relations are represented in storage. R permits the specification
for retrieval of any subset of data from the data bank. Action on
such a retrieval request is subject to security constraints.

The class of qualification expressions which can be used in a
set specification is in a precisely specified one-to-one
correspondence with the class of well-formed formulas of the
predicate calculus in prenex normal form [4]. Any arithmetic
functions needed can be defined in H and invoked in R. A set so
specified may be fetched for query purposes orly or it may be held
for possible changes. Insertions take the form of adding new
elements to declared relations without regard to any ordering that
may be present in their machine representatior. Deletions which are
effective for the community (as opposed to the individual user or
sub-communities) take the form of removing elements from declared
relations. Some deletions may be triggered by others, if deletion
dependencies between specified relations are ceclared in R.

One important effect that the view adopted toward data has on
the language used to retrieve it is in the naming of data elements
and sets. With the usual network view, users will often be burdened
with coining and using more relation names than are absolutely
necessary, since names are associated with directed paths rather
than with relations. Two such paths are needed to support symmetric
exploitation** of a single binary relation. For a relation of
degree n, the number of paths to be named and controlled is
factorial n.

Again, if a relational view is adopted ir which every n-ary
relation (n > 2) has to be expressed by the user as a nested
*The second-order predicate calculus (rather than first-order) is needed
because the domains on which relations are defined may themselves have
relations as elements (see section 1).
*#0nce a user is aware that a certain relation is stored, he will expect to
be able to exploit it using any combination of its arguments as "knowns"
and the remaining arguments as "unknowns," because the information (like
Everest) is there. This is a system feature (missing from many current
information systems), which we shall call (logically) symmetric
exploitation of relations.

5.

expression involving only binary relations, than 2n-1 names have to
be coined instead of only n+1 with direct n-ary notation as
described in Section 1. For example, the 4-ary relation ship of
Figure 1, which entails 5 names in n-ary notation, would be
represented in the form

P (supplier, Q (part, R (project, quantity)))

in nested binary notation and, thus, employ 7 names.
3. Operations on Relations

Since relations are sets, all of the usual set operations are
applicable to them. Nevertheless, the result may not be a relation;
for example, the union of a binary relation and a ternary relation
is not a relation.

The operations discussed below are specifically for relations.
These operations are introduced because of their key role in
deriving relations from other relations. Most users would not be
directly concerned with these operations. Information systems
designers and people concerned with data bank control should,
however, be thoroughly familiar with these operations.

3.1 Permutation

A binary relation has an array representation with two columns.
Interchanging these two columns yields the converse relation. More
generally, if a permutation is applied to the columns of an n-ary
relation, the resulting relation is said to be a permutation of the
given relation. There are, for example, 4! = 24 permutations of the
relation ship in Figure 1, if we include the identity permutation
which leaves the ordering of columns unchanged.

In a system which provides symmetric exploitation of relations,
the set of queries answerable by a stored relation is identical to
the set answerable by any permutation of that relation. Although it
is logically unnecessary to store both a relation and some
permutation of it, performance could make it advisable.

3.2 Projection

Suppose now we select certain columns of a relation (striking
out the others) and then remove from the resulting array any
duplication in the rows. The final array represents a relation
which is said to be a projection of the given relation.

A selection operator IT is used to obtain any desired
permutation, projection, or combination of the two operations.
Thus, if L is a list of k indices

L = i“ j_-‘, veny iL
and R is an n-ary relation (n = k), then II,(R) is the k-ary relation

whose ™ column is column i; of R (j = 1, 2, ..., k) except that
duplication in resulting rows is removed. Censider

the relation ship of Figure 1. A projection of this relation is
exhibited in Figure 3.

[1;, (ship) (project supplier)

=

Figure 3: A Permuted Projection of the Relation in Figure 1

Note that, in this particular case, the projection has fewer
n-tuples than the relation from which it is derived.

3.3 Join

Suppose we are given two binary relations, which have some
domain in common. Under what circumstances can we combine these
relations to form a ternary relation which preserves all of the
information in the given relations?

The example in Figure 4 shows two relations R, S, which are
joinable without loss of information, while Figure 5 shows a join of
R with S. A binary relation R is joinable with a binary relation S
if there exists a ternary relation U such that I1,,(U) = R and I1,(V)
= S. Any such ternary relation is called a join of R with S. If R,
S are binary relations such that TI,(R) = IT1,(S), then R is joinable
with S. One join that always exists in such a case is the natural
join of R with S defined by

R*S = {(a, b, ¢):R(a, b) A S(b,)}

where R(a, b) has the value true if (a, b) is a member of R and
similarly for S(b, c). It is immediate that

I[1,,(R*S)
and [L(R*S)

R
S

Note that the join shown in Figure 5 is the natural join of R
with S from Figure 4. However, this join is not the only one of R
with S. Figure 6 shows another possible join of the relations in
Figure 4.

R (supplier part) S (part project)
1

1 4 1
2 1 1. 2
2 2 2 1

Figure 4: Two Joinable Relations

R*S (supplier part project)
E 1 1

[R S S R e

2
1
2
1

NG KRN TN

Figure 5: The Natural Join of R with S (from Figure 4)

U (supplier part project)

1 1 2
2 1 1
2 2 1

Figure 6: Another Join of R with S (from Figure 4)

Inspection of these relations reveals an element (element 1) of
the demain part (the domain on which the join is to be made) with
the property that it possesses more than one relative under R and
also under S. It is this element which gives rise to the plurality
of joins. Such an element in the joining domain is called a point
of ambiguity with respect to the joining of R with S.

If either I,,(R) or S is a function*, no point of ambiguity can
occur in joining R with S. 1In such a case, the natural join of R
with S is the only join of R with S. Note that the reiterated
qualification "of R with S" is necessary, because S might be
joinable with R (as well as R with S), and this join would be an
entirely separate consideration. In Figure 4, none of the relations
R, I, (R), S, T,.(S) is a function.

Ambiguity in the joining of R with S can sometimes be resolved
by means of other relations. Suppose we are given, or can derive
from sources independent of R and S, a relation T on the domains
project and supplier with the following properties:

(1) T1(T) = I,(S)
(2) 1,(T) = IL(R)
(3) (3, s) — 3p (R(s, p) » S(p, J))

(4) R(s, p) = 3] (S(p, 3) ~ T(J» $))
(5) S(p, 3) = 3s (T(j, s) A R(s, p)),

then we may form a three-way join of R, S, T; that is, a ternary
relation such that

M,(U) = R
1—123(1“') =3
I, (U) = T.

*A function is a many-one binary relation.

Such a join will be called a cyclic 3-join to distinguish it
from a linear 3-join which would be a quaternary relation V such
that

nl?(v) = R
M,(V) = S
L, (V) = T.

While it is possible for more than one cyclic 3-join to exist
(see Figures 7, 8 for an example), the circumstances under which
this can occur entail much more severe constraints than those for a
plurality of 2-joins. To be specific, the relations R, S, T must
possess points of ambiguity with respect to joining R with S (say
point x), S with T (say y), and T with R (say z), and, furthermore,
y must be a relative of x under S, z a relative of y under T, and x
a relative of z under R. Note that in Figure 7 the points

have this property.

R (

[R N R T W]
(= o ol o 6 I T R -
T O m ot

m O O,

M M=

Figure 7: Binary Relations with a Plurality of Cyclic 3-Joins

U ()

I 4l
oo o o
(SR T Sa
Lo J o o T + T o5)
M LM O ot

Figure 8: Two Cyclic 3-Joins of the Relations in Figure 7

The natural linear 3-join of three binary relations R, S, T is
given by

R*S*T = {(a, b, e, d):R(a, b) A S (b, €) A T (c, d)}

where parentheses are not needed on the left hand side because the
natural 2-join (*) is associative. To obtain the cyclic

counterpart, we introduce the operator y which produces a relation of
degree n-1 from a relation of degree n by tying its ends together.
Thus, if R is an n-ary relation

“F"(R) = {(a‘.) R an-l):R(aJJ dyy eeey B a,_) Ady = a,,}.

We may now represent the natural cyclic 3-join of R, S, T by
the expression

Y(R*S*¥T).

9.

Extension of the notions of linear and cyclic 3-join and their
natural counterparts to the joining of n binary relations (where n =
3) is obvious. A few words may be appropriate, however, regarding
the joining of relations which are not necessarily binary. Consider
the case of two relations R (degree r), S (degree s) which are to be
joined on p of their domains (p < r, p < s). For simplicity,
suppose these p domains are the last p of the r domains of R, and
the first p of the s domains of S. If this were not so, we could
always apply appropriate permutations to make it so. Now, take the
cartesian product of the first r-p domains of R, and call this new
domain A. Take the cartesian product of the last p domains of R,
and call this B. Take the cartesian product of the last s-p domains
of S and call this C.

We can treat R as if it were a binary relation on the domains
A, B. Similarly, we can treat S as if it were a binary relation on
the domains B, C. The notions of linear and cyclic 3-join are now
directly applicable. A similar approach can be taken with the
linear and cyclic n-joins of n relations of assorted degrees.

3.4 Composition

The reader is probably familiar with the notion of composition
applied to functions. We shall discuss a generalization of that
concept and apply it first to binary relations. Our definitions of
composition and composability are based very directly on the
definitions of join and joinability given above.

Suppose we are given two relations R, S. T is a composition of
R with S if there exists a join U of R with S such that T = IT1,,(U).
Thus, two relations are composable if and only if they are joinable.
However, the existence of more than one join of R with S does not
imply the existence of more than one composition of R with S.

Corresponding to the natural join of R with S is the natural
composition of R with S defined by

ReS = I1,5(R*S).
Taking the relations R, S from Figure 4, their natural composition

is exhibited in Figure 9 and another composition is exhibited in
Figure 10 (derived from the join exhibited in Figure 6).

ReS (project supplier)
i 1

1 2
2 1
2 2

Figure 9: The Natural Composition of R with & (from Figure 4)

10.
T (project supplier)
T 2
2 i

Figure 10: Another Composition of R with S (from Figure 4)

When two or more joins exist, the number of distinct
compositions may be as few as one or as many as the number of
distinct joins. Figure 11 shows an example of two relations which
have several joins but only one composition. Note that the
ambiguity of point c is lost in composing R with S, because of
unambiguous associations made via the points a, b, d, e.

R (supplier part) S (part project)
1

m onn o w
0o mMm -+ L0

NS AT TR
moannNn oW

Figure 11: Many Joins, Only One Composition

Extension of composition to pairs of relations which are not
necessarily binary (and which may be of different degrees) follows
the same pattern as extension of pairwise joining to such relations.
We now proceed to make use of these operations on relations in
considering what relations need to be actually stored.

4. Expressible, Named and Stored Relations
Associated with a data bank are three collections of relations:

(1) the expressible set
(2) the named set
(3) the stored set

The expressible set is the collection of relations which can be
designated by expressions in the retrieval language for the purpose
of defining sets of data to be retrieved. Such expressions are
constructed from simple names of relations, relational operators
such as =, logical connectives and the quantifiers of the predicate
calculus.

The named set is the collection of all relations in the data
bank which the user can identify by means of simple public names.
This set is a subset of the expressible set - usually a very small
subset.

The stored set is the collection of all relations whose values
are actually stored in the data bank. This set would normally be a
subset of the named set, and we assume that it is. If the traffic
on some unnamed but expressible relation grows to such proportions
that such a relation should be included in the stored set, then it
should be given a public name and thereby included in the named set.

11.

Those relations which are in the named set and not in the
stored set are defined by expressions (independent of time)
involving names of relations in the stored set, together with the
permutation-projection, natural composition, natural join and tie

operators (I1, e, *, y). Such definitions by expressions must be
within the scope of the retrieval language R.

Decisions regarding which relations belong in the named set are
based mainly on the logical needs of the community of users, and
particularly on the ever-increasing investment in programs using
relations by name as a result of past membership of these relations
in the named set. On the other hand, decisions regarding which
relations belong in the stored set are based mainly on the
transaction and interaction loads, the performance requirements of
the users, and changes that take place in these factors.

5. Derivability, Redundancy and Consistency

A relation R is derivable from a set S of relations if there
exists a sequence* of permutations, projections, natural joins, and
ties which yields R from members of S. This sequence of operations
yields a correct value for R at virtually any time (for the stored
set, we must exclude times at which changes are actually being made
to the values of R and S) . Note that, because natural join is
specified, there is no question as to which join to take.

A set of relations is strongly redundant if it contains at
least one relation which is derivable from the rest of the members.
While the named set of relations is likely to be redundant in this
sense for user convenience, the stored set will often be
non-strongly-redundant in order to save storage space as well as
time to perform updates, insertions, and deletions. Only in an
environment with a heavy load of queries relative to the other kinds
of interaction with the data bank would strong redundancy be
justified in the stored set of relations.

A set of relations is weakly redundant if it contains at least
one relation which is not derivable from other members of the set,
but is at all times a projection of some join of other members of
the set. The join in question might be the natural one at some time
and an unnatural one at some other time.

Generally speaking, weak redundancies are inherent in the
logical needs of the community of users. They are not removable by
the system or data base administrator. If they appear at all, they
appear in both the named and stored sets. Strong redundancies, on
the other hand, are removable from the stored set, providing the
resulting performance changes are acceptable.

*We can omit natural compoesition in the list of operations, because it is a
combination of a join and a projection.

12.

As an example of a weak redundancy, consider the case cited
previously in which there are binary relations R, S, T with meanings
as follows:

R(s, p) supplier s supplies part p
to at least one project

S(p, j) part p is supplied by at least
one supplier to project j

T(j, s) project j is supplied at least
one kind of part by supplier s

All three relations are complex* relations with the possibility
of peints of ambiguity occurring from time to time in the potential
joining of any two. Hence, none of them is derivable from the other
two. However, constraints do exist between them, since each is a
projection of some cyclic join of the three of them. Thus, this set
of relations possesses a weak redundancy.

Whenever a set of relations is redundant in either sense, we
shall associate with that set a collection of statements which
define all of the redundancies which hold independent of time
between the member relations. If the information system lacks - and
it most probably will - detailed semantic infcrmation about each
named relation, it cannot deduce the redundancies applicable to the
named set. It might, over a period of time, make attempts to induce
the redundancies, but such attempts would be fallible.

Given a collection C of relations and an associated set of
constraint statements, we shall call C consistent or inconsistent
according as it does or does not comply with the stated
redundancies. For example, given stored relations R, S, T together
with the constraint statement

"M,(T) is a composition of TI1,(R) with 11,,(S)",

we may check from time to time that the values stored for R, S, T
satisfy this constraint. An algorithm for making this check would
examine the first two columns of each of R, S, T (in whatever way
they are represented in the system) and determine whether

(1) T(T) = M(R)

(2) T(T) = T1,(S)

(3) for every element pair (a, c) in the relation I1,(T)
there is an element b such that (a, b) is in
M,(R) and (b, c) is in I1,(S).

There are practical problems (which we shall not discuss here) in
taking an instantaneous snapshot of a collection of relations, some
of which may be very large and highly variable.

*A binary relation is complex if neither it nor its converse is a function.

6. Data Bank Control

Inconsistencies in a collection of relations may arise due to
inadequate or faulty input. An example of inadequate input is the
insertion of a new element, say (2, 5) in the relation S (part,
previous section). The generation of an inconsistency of this kind
could be logged internally, so that if it were not remedied within
some reasonable time interval by appropriate insertions in the
relations R, T the system could notify the security officer.
Alternatively, the system could assist the user in making insertions
and deletions by informing him that such and such relations now need
to be changed to restore consistency in the ccllection. Ideally, it
should be possible to make different selectiors of system reaction
to inconsistency for different subcollections of relations in an
individual data bank.

ACKNOWLEDGMENT

The author wishes to thank Dr. F. P. Palermo and Dr. E. B. Altman
of the San Jose Research Laboratory for helpful discussions.

REFERENCES

1. C. W. Bachman, "Software for Random Access Processing,”
Datamation, April 1965.

2. W. C. McGee, "Generalized File Processing," Annual Review
in Automatic Programming 5, 13, pp. 77-149, Pergamon
Press, 1969.

3. G. H. Mealy, "Another Look at Data," Proceedings Fall
Joint Computer Conference, 1967.

4. A. Church, "An Introduction to Mathematical Logic I,"
Princeton, 1956.

-

